
Eur. Phys. J. B 45, 369–375 (2005)
DOI: 10.1140/epjb/e2005-00186-3 THE EUROPEAN

PHYSICAL JOURNAL B

Ordered systems of ultrafine ferromagnetic particles

M. Portoa

Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 8, 64289 Darmstadt, Germany

Received 22 July 2004 / Received in final form 3 January 2005
Published online 6 July 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. A simple model for systems of dipolarly interacting single-domain ultrafine ferromagnetic par-
ticles is studied by Monte Carlo simulations. Zero field cooling and field cooling as well as relaxation
experiments are used to compare systems with positional and orientational disorder to systems which are
(i) positionally, (ii) orientationally, and (iii) positionally and orientationally ordered. It is shown that, as
far as macroscopic observables are concerned, these partially [cases (i) and (ii)] or fully [case (iii)] ordered
systems, despite quantitative differences, behave qualitatively very similar to the disordered one. This
holds true even for the relaxation, where the decay of the magnetization M(t)/MS (measured in units of
the saturation magnetization MS) leads to an instantaneous relaxation rate W (t) = −d/dt ln[M(t)/MS]
vanishing as a power-law as a function of time t, W (t) ∝ t−n. The exponent n is found to increase with
increasing concentration, and becomes n > 1 for dense systems.

PACS. 75.50.Tt Fine-particle systems; nanocrystalline materials – 75.40.Mg Numerical simulation studies
– 75.50.Lk Spin glasses and other random magnets

1 Introduction

It is generally observed that materials drastically change
their macroscopic behavior if the size of the crystalline
constituents becomes increasingly smaller. Many techno-
logical applications take advantage of the intriguing prop-
erties of such micro- or nanocrystalline materials, and the
diverse magnetic materials consisting of ultrafine ferro-
magnetic particles are a very good example for this ma-
terial class. As their magnetic properties can be widely
tailored, for instance by changing the particles’ intrinsic
properties, their size distribution, the particles’ positional
and orientational arrangements, etc., these materials own
applications in very widespread fields such as magnetic
recording, permanent magnets, magnetic sensors, ferroflu-
ids, pigments, refrigerant materials, but also in emerging
fields such as quantum computation and as diagnosis and
therapeutic tools in medicine (see Ref. [1] for recent com-
prehensive reviews).

For the same reasons that lead to their importance
for real-world applications, systems of ultrafine ferromag-
netic particles provide useful model systems to study quite
fundamental questions of magnetism, such as the inter-
play of the magnetic dipolar interparticle interaction and
the particles’ positional and orientational arrangement. In
fact, many of the intriguing features of ultrafine ferromag-
netic particles, in particular those being important for the
abovementioned applications, occur due to the presence
of strong interparticle interactions. However, in difference
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to the dilute systems with vanishing interparticle interac-
tion which are now well understood [2], the experimental
results for such dense systems are still controversially dis-
cussed [3].

A particular fascinating yet quite puzzling problem in
this respect are the spin-glass phases which have been re-
ported for some systems, for example for dense samples of
nanoparticles of γ-Fe2O3 [3(f)], ε-Fe3N [3(l)], and amor-
phous Fe1−xCx [3(m)], as well as in monolayer films of
Ni81Fe19 permalloy nanoparticles [3(q)], but are absent in
many others. It has been conjectured in reference [3(e)]
that such cooperative behavior is due to the interplay be-
tween the random anisotropies and the dipolar interac-
tion, whereas later experiments reported in reference [3(o)]
seem to suggest that it is the particles’ disordered spatial
arrangement, cooperatively with the dipolar interaction,
which dominate the behavior. First Monte Carlo (MC)
simulations of a simple model including dipolar interac-
tion indeed found collective phenomena at low tempera-
tures being characteristic for spin glasses [4]. However, in
later MC simulations spin-glass behavior was either not
found at all [5] or only for model parameters not being re-
alized in actual experiments [6]. These results have been
questioned again by the very recent observation of slow
relaxation in MC simulations [7].

One promising strategy to elucidate the behavior of
dense systems of ultrafine ferromagnetic particles in gen-
eral and the effect of the interparticle interaction in par-
ticular is to compare them to other related (preferentially
better understood) systems. One effort in this direction
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has been made by the present author by studying the in-
fluence of various types of positional disorder [6] (with
the objective of understanding the observations reported
in Ref. [3(o)]) and the effect of particles’ anisotropy [8].
Both studies intend to bridge the gap between the field of
ultrafine ferromagnetic particles and the field of dipolar
glasses [9], as the latter differ from the former mainly by
the type of positional disorder and the absence of parti-
cles’ anisotropy. This comparison has been quite fruitful,
as it was observed in these MC simulations that, if the po-
sitional disorder becomes gradually similar to the one of
dipolar glasses, the relaxation gets slower and slower until
at some point a cooperative freezing at low temperatures
occurs [6].

Another fascinating class of related systems are or-
dered nanocrystalline materials, so-called nanocrystalline
superlattices. Since they were first reported 15 years
ago [10], these intriguing systems have attracted con-
siderable attention. Multi-component nanocrystalline as-
semblies (the ones being important for the present
considerations) could usually be achieved only in an amor-
phous or short-range ordered state [10,11], but very re-
cently, two-component nanocrystalline superlattices have
been reported which are fully three-dimensional and long-
range ordered, consisting of ferromagnetic nanoparticles
(γ-Fe2O3) and semiconductor quantum dots (PbSe) [12].
Besides their importance for applications, it is an inter-
esting fundamental question how these ordered systems
of ultrafine ferromagnetic particles behave magnetically.
(Single crystals of magnetic molecules have already been
studied, showing quite interesting magnetic behavior, such
as for instance a stretched exponential relaxation with
a temperature dependent exponent [13].) Furthermore,
these ordered systems provide another promising candi-
date for a comparison to their disordered counterparts.
This comparison allows for a connection to the field of
ordered dipolar systems, which one might consider as
the ordered counterparts of the abovementioned dipolar
glasses. Systems of ordered dipoles (without anisotropy)
are known to have an antiferromagnetic ground state when
the dipoles are located on a simple cubic (sc) lattice,
and a ferromagnetic ground state for dipoles placed on
a body-centered cubic (bcc) or a face-centered cubic (fcc)
lattice [14]. So, the question is whether and how these an-
tiferromagnetic or ferromagnetic ground states show up in
ordered systems of ultrafine ferromagnetic particles.

To address these questions, ordered systems of ultra-
fine ferromagnetic systems are investigated by the simula-
tion of zero field cooling (ZFC) and field cooling (FC) as
well as by relaxation experiments. The central and some-
what surprising result of this study is that such ordered
systems, despite quantitative differences, behave qualita-
tively very similar to their disordered counterparts. Be-
sides the direct implications of this observation on ordered
systems of ultrafine ferromagnetic particles, it is impor-
tant to note that an analytical treatment of ordered sys-
tems might turn out to be feasible (in likely difference to
disordered ones). Hence, the result of a qualitatively same
behavior may, first, further motivate such effort and, sec-

ond, allow to draw conclusion from a successful analytical
treatment of ordered systems to disordered ones.

2 Model

Analogously to the model studied previously in refer-
ences [5,6,8], it is assumed that every particle i consists
of a single magnetic domain with all its atomic moments
rotating coherently, resulting in a constant absolute value
|µi| = MSVi of its total magnetic moment µi. Here, Vi de-
notes the volume of particle i, and MS is the saturation
magnetization which is supposed to be independent of
particle volume and temperature (the latter assumption
is well obeyed for temperatures much below the Curie
temperature). The energy contribution of each particle i
to the system’s total energy is composed of three parts:
(i) the anisotropy energy E

(i)
A (either caused by the par-

ticle’s shape or crystalline structure), (ii) the energy E
(i)
H

arising from the applied magnetic field, and (iii) the ener-
gies E

(i,j)
D due to dipolar interaction with particles j �= i.

To keep the model simple, a temperature independent uni-
axial anisotropy is considered,

E
(i)
A = −KVi

[
µi · ni

|µi|
]2

, (1)

where K denotes the anisotropy constant and the unit vec-
tor ni denotes the orientation of the easy axes of particle i
(the somewhat more complicated case of cubic anisotropy
has been studied for instance in Ref. [15]). The coupling
to the applied field H is described by

E
(i)
H = −µi ·H, (2)

and the energy due to magnetic dipolar interaction be-
tween particles i and j �= i located at ri and rj is given by

E
(i,j)
D =

µi · µj

r3
ij

− 3 (µi · rij) (µj · rij)
r5
ij

(3)

(an alternative MC approach including both dipolar and
exchange interactions can be found in Ref. [16]). Thereby,
the inter-particle distance is rij = ri − rj and rij = |rij |.
Adding up the three terms in equations (1–3) and sum-
ming over all particles, the system’s total energy

E =
∑

i

E
(i)
A +

∑
i

E
(i)
H +

1
2

∑
i

∑
j �=i

E
(i,j)
D (4)

is obtained.
To allow for the comparison with hypothetical systems

for which the particle anisotropy is absent, systems char-
acterized by the total energy

E′ =
∑

i

E
(i)
H +

1
2

∑
i

∑
j �=i

E
(i,j)
D (5)

are studied in parallel. Although these hypothetical sys-
tems are found useful to separate the relative influence of
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the particle anisotropy on the system’s magnetic behavior
and hence study a system without orientational disorder,
it should be emphasized that these hypothetical systems
are somewhat unphysical, as the original model’s energy
scale (which is 2KV ) is not present in equation (5).

For both systems characterized by either equation (4)
or equation (5), the samples considered in the following
consist of between N = 108 and N = 216 particles with
identical volume Vi = V . The unitless concentration c is
defined as the ratio between the total volume

∑
i Vi = NV

occupied by the particles and the sample volume Vsample,
c =

∑
i Vi/Vsample = NV/Vsample. The concentration will

be expressed in units of c0 = 2K/M2
S being a unitless ma-

terial constant of the order of unity [17]. The long-range
dipolar interaction is treated with periodic boundary con-
ditions using Ewald’s summation for an infinite sphere
surrounded by vacuum [18,19] (for an alternative MC ap-
proach based on effective field treatment see for example
reference [20] and references therein).

To perform the main magnetic MC simulation, a set
of particle positions {ri}C and, for the systems with par-
ticle anisotropy, a set of easy axes’ orientations {ni}C
are needed for each configuration C. The particle posi-
tions {ri}C for the cases of positionally ordered systems,
where the particles are located on a sc, fcc, or bcc lattice,
are straightforward and identical for all configurations C.
In the case of positionally disordered systems, to obtain
the sets of particle positions {ri}C in a well-defined and
controllable way, a preceding positional MC simulation is
performed before the main magnetic MC simulation [21].
During this preceding positional MC simulation, the par-
ticles can move freely in a cubic box of linear size L� and
interact only by a standard Lennard-Jones pair potential
v�
LJ(r

�) = 4[(1/r�)12 − (1/r�)6] with periodic boundary
conditions (quantities with � indicate reduced variables
of the preceding MC simulation). The reduced density is
chosen as �� = N [L�]−3 = 0.85, and the system is ther-
malized at the desired reduced temperature T �. To rely
specifically on the Lennard-Jones system to produce the
disordered particle positions is mainly motivated by the
fact that it is well studied, a detailed discussion is for in-
stance given in reference [19]. It is important to note that
in the case under consideration the reduced temperature
T � is not a real physical temperature, but just provides a
scalar parameter controlling the positional disorder [22].
A detailed discussion of the influence of the positional dis-
order controlled by the parameter T � on the magnetic be-
havior can be found in reference [8], in the following the
case T � = 1 of moderate positional disorder will be used
as a reference for the positionally ordered cases.

After the particle positions {ri}C for the current con-
figuration C are either given by a lattice or have been
provided by the preceding MC simulation, the respective
orientations {ni}C of the particles’ easy axes are chosen
for the systems with particle anisotropy. These orienta-
tions are either taken aligned with the field (ni parallel to
H) and hence identical for all configurations C, or are cho-
sen randomly with uniform probability. Both the positions
and the orientations remain constant during the following

main magnetic MC simulation. It should be noted, as there
are four different choices concerning the particle positions
{ri}C (disordered particles’ positions with T � = 1 as well
as particles’ positions chosen as sc, bcc, and fcc lattice)
and three different choices concerning the anisotropy (no
anisotropy energy, as well as the orientations {ni}C of the
particles’ easy axes being disordered or aligned with the
applied field), there are twelve different combinations to
be studied.

During the main MC simulation, the temperature T
and the applied field H are changed as discussed below,
and the magnetization M in the direction of the applied
field is recorded in certain time intervals (for further de-
tails concerning the application of the Metropolis MC al-
gorithm [21] to the present model see Refs. [5,6,8,15,23]).
The whole procedure of choosing the particles’ position,
choosing the easy axes, and main MC simulation is re-
peated for each configuration C, and an ensemble average
is performed by averaging over 650 to 1250 independent
configurations.

3 Results

The comparison between the twelve cases of positional
and orientational order and disorder, respectively, is done
by performing simulations of ZFC/FC experiments. Dur-
ing such an experiment, the system is first demagne-
tized at (super-)paramagnetic temperatures and cooled
in zero external magnetic field, afterwards a small exter-
nal field is applied, the system is heated until reaching
(super-)paramagnetic temperatures again (yielding the
ZFC magnetization) and then cooled again (yielding the
FC magnetization). For the applied field H/HA = 0.1 is
used in the cases discussed below, where HA = 2K/MS

denotes the anisotropy field, and the system is cooled
and heated using a constant rate of kB|∆T |/(2KV ) =
0.01225 every 8000 MC steps.

The comparison will be exemplified by a single mod-
erate concentration c/c0 = 0.13, but the behavior shown
below is typical for the rather large range of concentrations
for which the dipolar interaction and the anisotropy are
both important. In the dilute limit c → 0, the dipolar in-
teraction and hence the particles’ positional arrangement
becomes irrelevant, and the system’s behavior is solely
governed by the anisotropy energy.

The first part of the study done focuses on the three
cases of positionally disordered systems, either with ran-
domly oriented easy axes, without anisotropy energy, or
with aligned easy axes, see Figure 1. These three cases
with T � = 1 will serve as reference for the remaining nine
positionally ordered cases. As already discussed in refer-
ence [8], the blocking temperature TB is drastically low-
ered in systems without anisotropy energy, equation (5),
and hence the particles anisotropy, cooperatively with the
dipolar interaction, is a major mechanism for the block-
ing of the magnetic moments for medium and large con-
centrations. This can also be seen in the partially (i.e.,
orientationally) ordered systems with aligned particles’
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Fig. 1. Plot of the magnetization M/MS vs. temperature
kBT/(2KV ) obtained by ZFC/FC with a cooling/heating rate
of kB|∆T |/(2KV ) = 0.01225 every 8000 MC steps, for con-
centration c/c0 = 0.13 and positional disorder T � = 1 (N =
125 particles). The open and full circles show the data for sys-
tems with randomly oriented easy axes, open and full squares
are for systems without anisotropy energy, and open and full
diamonds are for systems for which the easy axes are aligned
with the field. The arrows indicate the respective blocking tem-
perature TB, and the error bars are about the size of the sym-
bols.

anisotropy axes, for which the blocking temperature TB

is significantly increased.
The central part of this study are the nine cases of

positionally ordered systems, focusing on the sc, bcc, and
fcc lattices, see Figure 2. For systems consisting solely of
interacting dipoles, the case where the dipoles are located
on a sc lattice has an ‘columnar’ antiferromagnetic ground
state, whereas dipoles being located on bcc and fcc lattices
have a ferromagnetic ground state [14]. This twofold be-
havior can be seen when comparing the data obtained for
the sc lattice shown in Figure 2a with the data obtained
for the bcc and fcc lattice shown in Figures 2b and c. The
applied field H/HA = 0.1 is chosen to be rather large to
ensure an accurate MC simulation, nevertheless the dif-
ferences are quite obvious when looking on the cases of
systems without anisotropy energy and of systems with
aligned anisotropy axes, as both the blocking tempera-
ture and the low temperature FC magnetization differ by
around 25%. The dichotomy is somewhat ‘smeared out’ by
the orientational disorder, and the differences drop to be-
low 10%. It is also interesting that for the case of the par-
ticles being located on a sc lattice, the field cooling curves
for systems with disordered orientations of the anisotropy
axes and for systems without anisotropy energy are essen-
tially identical, indicating that the disordered orientations
of the particles’ easy axes average out for this positional
arrangement. Note that for the case of particles being lo-
cated on a sc lattice without anisotropy energy, the block-
ing temperature kBTB/(2KV ) < 0.01 and could not be
obtained precisely. In general one observes that (i) the
blocking temperatures TB for the case of orientational dis-
order is almost identical when comparing the cases of posi-
tionally disordered systems and the three cases of ordered
systems, so that positional order or disorder has hardly
any effect if orientational disorder is present. However,
there is a quantitatively different behavior (ii) for sys-

Fig. 2. Plot of the magnetization M/MS vs. temperature
kBT/(2KV ) obtained by ZFC/FC with a cooling/heating rate
of kB|∆T |/(2KV ) = 0.01225 every 8000 MC steps, for concen-
tration c/c0 = 0.13. The N particles are arranged on a (a) sc
lattice (N = 216), (b) bcc lattice (N = 128), and (c) fcc lattice
(N = 108). In all three cases, the open and full circles show
the data for systems with randomly oriented easy axes, open
and full squares are for systems without anisotropy energy, and
open and full diamonds are for systems with easy axes aligned
with the field. The arrows indicate the respective blocking tem-
perature TB (in (a), for the systems without anisotropy energy,
kBTB/(2KV ) < 0.01 and could not be obtained precisely) and
the error bars are about the size of the symbols.

tems without anisotropy energy and (iii) for systems with
aligned anisotropy axes. The systems for which the parti-
cles are located on bcc and fcc lattices still behave simi-
lar to the positional disordered case, whereas the system
of sc lattice behaves quite different: In the system with-
out anisotropy energy, the blocking temperature TB is de-
creased, whereas for aligned anisotropy axes a pronounced
increase of the blocking temperature TB is observed. As
the system of particles located on a sc lattice with aligned
anisotropy axes has a significantly larger blocking tem-
perature TB, see Figure 2c, and is hence somewhat par-
ticular, it is suggestive to have a more detailed look
on this specific case. In Figure 3, the data shown in
Figure 2a for concentration c/c0 = 0.13 is compared with
two larger concentrations c/c0 = 0.195 and c/c0 = 0.26. It
is observed that the blocking temperature increases in this
concentration range roughly linear with the concentration.
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Fig. 3. Plot of the magnetization M/MS vs. temperature
kBT/(2KV ) obtained by ZFC/FC with a cooling/heating rate
of kB|∆T |/(2KV ) = 0.01225 every 8000 MC steps, for N =
216 particles arranged on a sc lattice with easy axes aligned
with the field. The symbols refer to a concentration c/c0 = 0.13
(open and full circles), c/c0 = 0.195 (open and full squares),
and c/c0 = 0.26 (open and full diamonds). The arrows indicate
the respective blocking temperature TB, and the error bars are
about the size of the symbols.

The relaxation behavior for the three cases shown in
Figure 3 is displayed in Figure 4a, where the magne-
tization M/MS is shown as a function of time t on a
log-log scale. The comparison is done for temperatures
having a fixed ratio T/TB = 0.203045, where TB is ob-
tained from Figure 3. The setup is such that the sys-
tems are cooled in the saturated field H/HA = 4 from
(super-)paramagnetic temperatures to the desired temper-
ature, and the applied field is cut at t = 0, where the time
t is measured in MC steps. One can clearly distinguish
three different behaviors: The top curve for the smallest
concentration c/c0 = 0.13 shows a pronounced downward
curvature, so that the magnetization decays faster than a
power-law. The middle curve for the medium concentra-
tion c/c0 = 0.195 shows a rather clear power-law decay,
whereas the bottom curve for the largest concentration
c/c0 = 0.26 seems to approach a finite value with no fur-
ther decay.

As there is no analytical form for the relaxation
behavior known, many different functional forms have
been suggested [24,25]. One way to analyze the three-fold
behavior seen in Figure 4a more quantitatively is by
looking on the instantaneous relaxation rate [7,25].
Denoting the magnetization at time t as M(t), one
defines the instantaneous relaxation rate W (t) at time t
as W (t) = −d/dt ln[M(t)/MS], so that one can write

M(t)
MS

= exp
[
−

∫ t

0

W (t′) dt′
]

. (6)

For disordered systems, one typically finds (true or effec-
tive) power-law decays for the instantaneous relaxation
rate of the form W (t) = W0 t−n for large times t [26]. Un-
der the assumption that W (t) decays as a power-law for
t > t0, depending on the value of the exponent n, there are

Fig. 4. (a) Plot of the magnetization M/MS vs. time t (in
number of MC steps) for N = 216 particles arranged on a sc
lattice with easy axes aligned with the field. The symbols refer
to concentration c/c0 = 0.13 and temperature kBT/(2KV ) =
0.04435 (open circles), c/c0 = 0.195 and kBT/(2KV ) = 0.05
(open squares), and c/c0 = 0.26 and kBT/(2KV ) = 0.05543
(open diamonds). The lines show fits of the form of equation (7)
for t > t0, with t0 = 2 × 104, t0 = 3 × 104, and t0 = 103 (from
top to bottom), as described in the main text (the dashed part
is for t ≤ t0). The error bars are smaller than the size of the
symbols. (b) Plot of the instantaneous relaxation rate W vs.
time t (in number of MC steps), as obtained from the data
shown in (a). The lines show the same fits as in (a) after being
translated into instantaneous relaxation rates (the dashed part
is for t ≤ t0).

three cases to be distinguished for the behavior of M(t),
namely

M(t)
MS

�




exp

[
−c0

(
t

t0

)1−n
]

, 0 ≤ n < 1,

(
t

t0

)−W0

, n = 1,

exp(−c0)

[
1 + c0

(
t

t0

)1−n
]

, n > 1,

(7)
with the constant c0 given by c0 = W0 t1−n

0 /|1−n| for n �=
1. It should be noted that for n > 1, the magnetization in
equation (7) approaches a finite value in the limit t → ∞,
M∞ = limt→∞ M(t) = M(t0) exp[−W0 t1−n

0 /|1 − n|], and
the system does not further relax. This is different from
the cases n ≤ 1, for which the magnetization eventually
reaches the equilibrium value in the limit t → ∞ (although
the decay is very slow in the case n = 1).

In fact, the data shown in Figure 4a can be rather accu-
rately fitted with equation (7), so that the instantaneous
relaxation rate is very well described by a power-law after
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some time t0, even for this fully ordered system. For the
case of the temperature at which relaxation takes place
having a fixed ratio T/TB = 0.203045, the system with
the smallest concentration c/c0 = 0.13 follows the first
scenario with 0 ≤ n � 0.87 < 1 for t > t0 = 2 × 104, the
system with the medium concentration c/c0 = 0.195 fol-
lows the second scenario with n � 1 for t > t0 = 3 × 104,
and the system with the largest concentration c/c0 = 0.26
follows the third scenario with n � 2.25 > 1 already for
t > t0 = 103. In Figure 4a, the three fits are shown as
lines, which are drawn dashed below t0. The numerically
obtained instantaneous relaxation rates W (t) are shown
in Figure 4b, where the three different scenarios can be
seen more directly, as W (t) decays as W (t) ∝ t−0.87

for c/c0 = 0.13, W (t) ∝ t−1 for c/c0 = 0.195, and
W (t) ∝ t−2.25 for c/c0 = 0.26. The three fits of Fig-
ure 4a, after their translation into instantaneous relax-
ation rates, are shown as lines in Figure 4b, which are
again drawn dashed below t0. In the case of the largest
concentration c/c0 = 0.26, a finite value of the magneti-
zation M∞/MS � 0.144 is obtained in the limit of t → ∞.
The present results allow an interesting comparison to a
recent study [7], as the present systems are fully ordered,
so that one would not expect the slow or vanishing relax-
ation being related to any glassy behavior. Therefore, an
important conclusion of studying ordered systems of ul-
trafine ferromagnetic particles is that one might generally
not take an instantaneous relaxation rate W (t) decaying
as W (t) ∝ t−n with an exponent n > 1 as an indication
of some type of glassy phase.

To investigate the system with the largest concentra-
tion c/c0 = 0.26 in somewhat more detail and to see
whether the observed vanishing relaxation is robust with
respect to finite applied fields, the relaxation behavior
in an applied field H/HA = 0.1 is studied. Similarly
as before, the system is cooled in an applied field from
(super-)paramagnetic temperatures to the desired tem-
perature, at which the field is changed to a finite value
H/HA = 0.1. Here, three cases are studied, namely cool-
ing in the applied field H/HA = 0.1 (so no change of the
applied field is done at t = 0) and cooling in the satu-
rated fields H/HA = 4 and H/HA = −4. As can be seen
in Figure 5, these three initial conditions at t = 0 yield
three distinct values of the magnetization. It is important
to note that the instantaneous relaxation rates for the two
cases of cooling in saturated fields decay as W (t) ∝ t−n

with n > 1, so that the magnetization will remain distinct
in the limit t → ∞. Hence, the observation of a slow or
vanishing relaxation is robust even if the relaxation occurs
in a finite applied field.

4 Conclusions

The central and somewhat surprising conclusion of this
paper is that, as far as macroscopic observables are con-
cerned, the cases of positional order are not that different
from the positionally disordered case as long as orienta-
tional disorder is still present. The reason seems to be
that the orientational disorder ‘smears out’ to a large ex-
tend the underlying positional order. Even if the system

Fig. 5. Plot of the magnetization M/MS vs. time t (in number
of MC steps) for N = 216 particles arranged on a sc lattice
with easy axes aligned with the field, concentration c/c0 =
0.26, temperature kBT/(2KV ) = 0.05543, and applied field
H/HA = 0.1. The symbols refer to cooling in applied field
H/HA = 0.1 (open circles), and to cooling in saturated fields
H/HA = 4 (open squares) and H/HA = −4 (open diamonds).
The error bars are smaller than the size of the symbols.

is fully ordered, the behavior is qualitatively still simi-
lar, despite quantitative differences. Probably the most
interesting case studied is the system where the parti-
cles are located on a sc lattice and have the anisotropy
axes aligned with the applied field, both from the point
of view of addressing fundamental questions of magnetism
such as relaxation behavior, as well as concerning possi-
ble applications. The latter, in particular, as the blocking
temperature is in this case much larger than the one of
the other (ordered or disordered) systems, for fixed con-
centration. However, the relaxation behavior is still quite
similar to disordered systems, as the instantaneous relax-
ation rate W (t) = −d/dt ln[M(t)/MS] decays as a power-
law, W (t) ∝ t−n, for t > t0. For the largest concentra-
tion c/c0 = 0.26 studied, when the system is cooled in
a saturated applied field and the field is cut at t = 0,
W (t) ∝ t−2.25 is observed for t > t0 = 103, so that there
is a finite magnetization in the limit of t → ∞. This ef-
fect is found to be robust even if the applied field is not
cut to zero but reduced to a finite value. As these sys-
tems are fully ordered, one would not expect the slow or
vanishing relaxation being related to any glassy behavior.
Therefore, an important conclusion is that an instanta-
neous relaxation rate W (t) decaying as W (t) ∝ t−n with
an exponent n > 1 might generally not be taken as an
indication of some type of glassy phase.
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plexer Systeme, Dresden, Germany, where first parts of this
work were conducted.
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15. J. Garćıa-Otero, M. Porto, J. Rivas, A. Bunde, J. Appl.

Phys. 85, 2287 (1999)
16. M. El-Hilo, R.W. Chantrell, K. O’Grady, J. Appl.

Phys. 84, 5114 (1998)
17. To give an estimate for the concentration range c/c0 = 0.13

to c/c0 = 0.26 in real units: Maghemite particles with
mean diameter of approx. 7.5 nm studied by Jonsson
et al. [Phys. Rev. Lett. 75, 4138 (1995)] show MS =
420 emu/cm3 and K = 1.9 × 105 erg/cm3, which gives
c0

∼= 2.15. For iron-nitride particles with mean diameter
of approx. 6 nm, Mamiya et al. [Phys. Rev. Lett. 80, 177
(1998)] found MS = 1182 emu/cm3 and K = 106 erg/cm3,
which yields c0

∼= 1.43. Accordingly, the concentration
range c/c0 = 0.13 to c/c0 = 0.26 considered here cor-
respond to a range c ∼= 0.28 to c ∼= 0.56 in the case of
maghemite particles and to a range c ∼= 0.18 to c ∼= 0.36
in the case of iron-nitride particles, respectively

18. S.W. de Leeuw, J.W. Perram, E.R. Smith, Proc. R. Soc.
Lond. A 373, 27 (1980)

19. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids
(Clarendon Press, Oxford, 1987)

20. A.F. Pshenichnikov, V.V. Mekhonoshin, J. Magn. Magn.
Mater. 213, 357 (2000); R.W. Chantrell, N. Walmsley,
J. Gore, M. Maylin, Phys. Rev. B 63, 024410 (2001)

21. All MC simulations (the preceding positional and the
main magnetic one) are performed using the stan-
dard Metropolis algorithm, see for example K. Binder,
D.W. Heermann, Monte Carlo Simulations in Statistical
Physics: An Introduction, Springer Series in Solid State
Science, Vol. 80, 3nd edn. (Springer, Berlin, 1997)

22. In actual experiments, the effective value of T � may be
controlled for instance by the particles’ coating as done by
M.F. Hansen et al. [Phys. Rev. B 62, 1124 (2000)]
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